
NA SA-CR_| 92264_

Status Report for NASA Grant NAG 2-832

/'

.:-./_a

Covering Period from 4/1/93 to 9/30/93

PARALLEL UNSTRUCTURED GRID GENERATION

FOR COMPUTATIONAL AEROSCIENCES

Mark S. Shephard

Scientific Computation Research Center

Rensselaer Polytechnic Institute

Troy, NY 12180-3590

(NASA-CR-192244) PARALLEL

UNSTRUCTUREO GRID GENERATION FOR

COMPUTATIONAL AEROSCIENCES Status

Report, I Apr. - 30 Sep. 1993

(Rensselaer Polytechnic Inst.)

I4 p
G3162

N94-23483

Unclas

0201705

Abstract

The objective of this research project is to develop efficient parallel automatic grid

generation procedures for use in computational aerosciences. This effort is focused on a

parallel version of the Finite Octree grid generator [17]. This report represents discusses

the progress made during the first six months of support.

1. Introduction

The development of automatic grid generation techniques for complex three-

dimensional configurations has been an active area of research for over a decade.

The most complex aspects of these techniques are the computational geometry issues

associated with ensuring the grids generated represent a valid discretization [14, 13, 16]

of the original geometric domain as it is defined in a geometric modeling system. All

of the complex issues of automatic grid generation are associated with domains bounded

by general curved surfaces. From a computational geometry viewpoint, the automatic

generation of 3-D grids for domains bounded by planar surfaces (including those already

discretized into a planar surface grid) is straightforward. This effort is focused on the

development of parallel grid generation techniques for general domains bounded by

curved surfaces with no requirement to pre-triangulate the surface.

As discussed in the original proposal, the previous efforts on creating parallel

automatic mesh generators have focused on performing triangulation of a given discrete

domain [3, 8], or have simulated the parallelization of the computations without full

consideration of the communications [12] overhead. In this effort consideration is being

given to the parallel implementation of the entire mesh generation process. The non-

uniform nature of the computations associated with automatic mesh generation dictate the

use of MIMD computing methodologies. To provide the highest degree of transportability

between MIMD computers, the procedures being developed employ message-passing.

The efforts to date on the development of a parallel Finite Octree have considered

the changes required for those portions of the current serial procedure that should be

implemented using different methods, and the parallel implementation of those parts that

will stay much the same in the final version. The portion of the Finite Octree procedure

requiring a detailed evaluation of alternative implementations is the consmaction of the

first level discretization, the finite octree. The portions requiring the least consideration of

major change are associated with the creation of the finite element mesh within the finite

octree. As indicated below, a parallel implementation of most of the element creation

2

stepsis in place,and,after evaluationof a numberof alternatives,anapproachfor the
parallel implementationof the finiteoctreeconstructionprocesshasbeenselected.

2. Construction of the Finite Octree

As discussed in the original proposal, much of the effort in the Finite Octree automatic

mesh generation is spent during tree building determining the interactions of the boundary

of the object with the boundary of the octree ceils. Since the amount of computational

effort required to determine these interactions varies dramatically from octant to octant,

and it is not known until it has been determined, the effective parallelization of this portion

of the process is quite complex. The two most obvious approaches to parallelize the tree-

building process are (i) to control the process through the octree structure distributing

effort to processors on an octant by octant basis, and (ii) the parallel insertion of geometric

entities into the Finite Octree by distributing the edges and faces bounding the object

among the processors. Substantial effort has been spent on devising alternative strategies

within those two approaches.

Careful evaluation of the controlling parallelization by distributing geometric entities

to the processors indicated the following disadvantages:

1. Interprocessor communication would most likely be quite high since information on

individual octants would reside on each processor housing a geometric entity which

interacts with it. The performance of mesh validity checks involving the interaction of

different geometric entities would require an extremely high amount of interprocessor

communication with little computation per communication.

2. Since parallel implementation of later steps in the process will be best coordinated

through the octree structure, a redistribution of the mesh information based on the

tree, after the tree is built would be required.

Therefore, effort has focused on methods to parallelize through the distribution of the

tree. In this approach the major question is the most effective method to construct the

tree in parallel An examination of procedures developed in image synthesis [5] and

ray tracing [6] were useful here. One approach to do this starting from the current

serial tree building procedure is to consider the distribution of octants to processors as

arise during the edge, face and region insertion process. Although having the potential

advantage of best load balance, this approach has the two disadvantages of (i) a high level

of interprocessor communications and (ii) difficulty in trying to distribute neighboring

octants to the sameprocessor,leadingto additionalinterprocessorcommunicationsin
later stepsof the meshingprocess.

An alternativeapproachto the constructionof the finite octree,which will reduce
the amount of interprocessorcommunication,is to employrecursivesubdivision. In
recursivesubdivisionthe processof determiningthe interactionsof octantand model
entities beginswith the root octant. This oct,antis then subdividedinto eight octants
only determiningthe pointwiseinteractionsof the model entitieswith the new octant
entities. The processof subdividingoctantsis recursivelyperformeduntil the correct
sized terminal octantsare obtained.

The introduction of a recursive subdivisionapproach,which has been used in
octree/Delaunaytechniques[4, 15],doesintroducea numberof alterationsto theordering
and specific aspectsof algorithmic stepswithin the Finite Octreeprocedure. The
main reasonfor the requiredchangesis that in thecurrentFinite Octreeprocedurethe
variousfinite elementvertices,edgesandfacesareconstructedasthegeometricentity is
processed.In recursivesubdivision,it is only reasonableto determinethemeshvertices
due to the intersectionof modeledgeswith octantfacesand the intersectionof octant
edgeswith model faces. The processof constructingthe appropriatemeshedgesand
facesmust thenbe doneafter all the meshvertices,to ensurethe requiredinteractions
are complete.Therefore,the stepsin the meshgenerationbecome:

1. Treebuilding by recursivesubdivision
2. Enforcementof 2:1 level of differencebetweenoctantedgeneighboringterminal

octants
3. Creationof meshedgesclassifiedon modeledge
4. Creationof meshedgesclassifiedon theclosureof theoctantfaceandmodel face
5. Creationof octantlevel loopsclassifiedon model face
6. Classificationof terminaloctantcomersandcreationof meshedgesclassifiedon the

closureof the octant face and model region
7. Creationof octantlevel loopsclassifiedon model region
8. Octant level loop triangulation
9. Terminal octant tetrahedronization
10. Node point repositioning

The basicstepsinvolved with theparallel recursivesubdivisionprocessare:

1. Create8 child octants
2. Transfermeshverticesfrom parent to child octants

4

3. Intersectall modeledgesin parentoctantwith 3 auxiliaryparentoctantfaces(Fig. 1)

4. Intersectall modelfacesin parentoctantwith up to 15auxiliaryparentoctantedges
(Fig. 1)

5. For eachintersection,createa mesh vertex and make it known to the proper terminal

octants

6. Update global tree (known by each processor)

7. Repartition tree

8. Migrate octants

...'T2_":: :'_, ,.'T7 :.::

..:].
' :, -_-'---,'" I I , ,'-'-

! I_ i '" :

, . °- : .,-'_"
oO

°oO°°°° , °o° _" , o°°"
L _ I.o ° -° ._ So_ m Ill m ill iim

Auxiliary parent octant faces Auxiliary parent octant edges

Figure 1. Auxiliary parent octant faces and edges.

A critical aspect of the parallel version of the procedures is the distribution of

the octants to processors and performing repartitioning, when needed, to maintain load

balance [7, 9, 11]. As the octree workload becomes too unbalanced, it will be repartitioned

by first estimating the workload to determine the work per processor. A linear traversal

of the tree will then be used to reassign the terminal nodes to the available processors.

This process is depicted in Figure 2. Other partition algorithms to be considered are

orthogonal recursive bisection [10], and the repartitioning procedure given by Berger and

Bokhari in reference [2]. In this example four processors are assumed and the amount of

effort per terminal octant is assumed equal. Figure 3 shows the partitions of the FLANGE

model example created using the (re)partitioning procedures.

proc id
i/j o/I

0/2 111 211 3/I

0/1

012

2/1

1/1

3/1

013 0/4 0/5 0/6 3/2 313 3/4 3/5

0/3 0/4 112 I/3-_repartltlonlng_'-2./2 2/3 3/2 313

0/3o/41
1/1

0/5 0/6,

3/2 3/3
2/1 _

3/4 3/5

repartitioned
tree

original tree
partitioning

0/3 0/4
1/1

1/2 1/3

2/2 2/3
2/1

3/2 3/3

Figure 2. Redistribution of terminal octants to processors.

3. Construction of Mesh Edges on Model Edges

The mesh edges classified on the model edges are created based on the mesh vertices

defined during the recursive subdivision process by the intersection of model edges with

octant faces. The overall procedure for the parallel construction of this information is:

1. For each terminal octant known by given processor and for each model edge known

by the octant:

a. Create a mesh edge each time the model edge enters and exits the octant (Fig. 4)

b. If mesh edge is classified on an octant edge or face, communicate its creation

to neighboring processors (if any)

2. Receive pending messages and create mesh edges accordingly

6

Figure 3. Partitioned mesh for FLANGE model.

4. Mesh Edges on Octant Faces and Model Faces

The mesh edges classified on octant faces and model faces are created based on

the mesh vertices defined during the recursive subdivision process by the intersection of

model edges with octant faces, and octant edges with model faces. The overall procedure

for the paraUel construction of this information is:

1. Given a terminal octant face and a model face known by the octant face:

proc i procj

Figure 4. Creation of mesh edges on model edges.

model face

Figure 5. Mesh edges on octant faces and model faces.

a. Gather all mesh vertices classified both on octant face's closure and model face's

closure

b. Create a mesh edge between 2 vertices if it discretizes properly the trace of the

model face on the octant face (Fig. 5)

2. For each terminal octant known by given processor:

a. Process "left" octant face with respect to any model face known by the octant face

b. Send data to neighboring processors (if any)

3. Receive pending messages and create mesh edges accordingly

4. For each terminal octant known by given processor, process "right" octant face with

respect to any model face known by the octant face (if not already done)

5. Do the same for bottom-top and back-front octant faces

5. Creation of Octant Level Loops Classified on Model Faces

Once all the mesh edges have been created, the mesh edge loops needed by the

octant level triangulation procedures must be created. The overa]2 procedure for the

parallel consWuction of this information is:

1. For each terminal octant and each model face known by the octant (Fig. 6):

a. Gather all mesh vertices and mesh edges classified both on octant's closure and

model face's closure

b. Assign 1 directed edge_use to any mesh edge classified on a peripheral model

edge and 2 on any other

c. Create loops so that all edges are used the proper number of times

d. Reject any loop that goes in opposite direction of the model face

e. Possibly connect loops together to form simply connected loops

,

model face

/ /
/ ',,-:'.-........ ;..-" I

Figure 6. Octant level model face loop building.

If an octant face is shared by 2 processors and a loop is defined fully within that

face, the 2 loop versions are implicitly guaranteed to be identical

6. Octant Level Loop Triangulation

Once all the octant level loops have been constructed they can be triangulated. The

current implementation of Finite Octree employs an element removal procedure based

on the triangle removal operators shown in Figure 7. The major complexity in the

parallelization of this procedure is the need to ensure that only a single triangulation is

obtained for each loop. The basic approach taken to the parallelization of this process is to

order the triangulating of octant face loops based on position on the octant boundary, and

then, for those octant faces on interprocessor boundaries, to communicate triangulations

once they have been created. The procedures developed use the CM5 message passing

procedures [1].

v

Vertex removal Edge removal

Figure 7. Triangle removal operators.

The steps in the octant level loop triangulation process are:

1. For each terminal octant known by given processor P triangulate "left" octant faces

and prepare communication information needed for partition neighbors

a. Triangulate all loops (faces) classified on the "left" octant face

b. For each created mesh face on the partition boundary:

• Get neighboring processor P'

• Pack information about how to create that mesh face and the neighboring

processor into array A

• Place a 1 into array C to indicate that P will send at least 1 message to P'

2. For each P' appearing in A, reshuffle A and send to P' asynchronously (Fig. 8)

....,..,_ .._OC 3

c_ Je" I , proc 11/ J_/I
pro _'] _ will send msg ,_..._./._oc 4

...
Reduction-Add

01 234 01 234

procolaloIolo Iol procl, 2,3,aI1 101010I 0I

Figure 8. Message marking for octant face triangulation.

10

3. Performreductionoperation(add)onarrayC to indicatehowmanymessagesshould
be received (Fig. 8)

4. For each pendingmessage:

a. Get size of message
b. Receivemessage(block)
c. For eachsetof data,createup to 3 meshedgesanda meshface(if not already

existing)
d. If meshentitiesalreadyexist, they may haveto be reclassifiedif the message

indicatesthat theyareclassifiedon a lower ordermodelentity (Fig. 9)

5. For eachterminaloctantknown by theprocessor,triangulatethe "right" face loops
on the right handboundaryof the modelthat havenot yet beentriangulated.

6. Repeatsteps1-5 for "bottom-top" and"back-front"octant faces
7. For eachterminalboundaryoctantknownto agivenprocessor,triangulatetheinterior

face loops:

a. Triangulateall loopsclassifiedin the octantinterior
b. If analreadyexistingmeshfaceneedsto be reclassified(andpossiblybounding

meshedges),reclassifymeshface(andpossiblyboundingmeshedges)(Fig. 10)

T3 Triangulated model face

Triangulated octant face loop loop Interior to octant

Figure 9. Model face loop interior to octant: Case of mesh edge reclassification.

_ _ iangulated octant face loop
Triangulated model face
loop interior to octant

Figure 10. Model face loop interior to octant: Case of mesh face and edge reclassification.

11

The octant level loop triangulation procedures have been implemented using the above

procedure. Figure 11 shows the CPU times required for triangulation for the FLANGE

model example shown in Figure 3 as the number of processors is increased from 1 to 64.

56

50 ¸

45

4O

"_30

!

2O

15

10

5

0

Tr_ngulaUon (FLANGE model]

I I I
8 16 32

Nund)er ol proceesors

64

20

18

18

14

12

_ ,°

8

Triangulation (FLANGE model)

I I I
8 16 32 64

Number of procurers

Figure 11. Triangulation timings (FLANGE model).

7. Octant Tetrahedronization

Once the octant level mesh loops have been triangulated the tetrahedra are generated

in parallel on an octant-by-octant basis using element removal operators (Fig. 12). This

is a straight forward process since no interprocessor communication is required. This

process is carried out using the partitioning of the finite octree already constructed. Figure

13 shows the CPU time required for the FLANGE model example shown in Figure 3 as

the number of processors is increased from 1 to 64.

8. References

[1] CMMD reference manual version 3.0. Thinking Machines Corporation, Cambridge,

MA, 1993.

[2] M.J. Berger and S. H. Bokhari. A partitioning strategy for nonuniform problems on

multiprocessors. IEEE Transactions on Computers, C-36(5):570-580, May 1987.

12

70'

5O

IS,.
!

30

20

10

0

Vertex removal Edge removal Face removal

Figure 12. 3-D element removal operators.

Totmhedronlz_don (FLANGE model]

v

| | |
8 16 32

Number of _o
84

18

18

14

12

_8

6

4

2

0

TotnlhedronlzaUon (FLANGE mode)

i | l
8 16 32 84

Nurnb_ of pmomoom

Figure 13. Tetrahedronization timings (FLANGE model).

[3] F. Cheng and M. Mehra. Parallel mesh generation for objects composed of 3D

free-formed surfaces, 1991. submitted for publication.

[4] H. L. de Cougny. Automatic generation of geometric triangulations based on

octree/Delaunay techniques. Master's thesis, Civil and Environmental Engineering,

Scientific Computation Research Center, Rensselaer Polytechnic Institute,Troy, NY

12180-3590, May 1992. SCOREC Report # 6-1992.

[5] M. Dippe and J. Swensen. An adaptive subdivision algorithm and parallel architec-

ture for realistic image synthesis. Computer Graphics, 18(3):149-158, 1984.

13

[6] S.GreenandD. Paddon.Exploiting coherencefor multiprocessorray tracing.IEEE

Computer Graphics and Applications, 9(6):12-26, 1989.

[7] J. JaJa. An introduction to Parallel Algorithms. Addison Wesley, Reading Mass.,

1992.

[8] R. L0hner, J. Camberos, and M. Merriam. Parallel unstructured grid generation. In

Proc. 1991 AIAA CFD Conf., pages 627-637. AIAA, 1991. AIAA-91-1582-CP.

[9] D. Nicol and R. Fujimoto. Parallel simulation today. Technical Report ICASE Report

No. 92-62, Institute for Computer Applications in Science and Engineering, NASA

Langley Research Center, Hampton, Virginia, 1992.

[10] C. Pommerell, M. Annaratone, and W. Fichtner. A set of new mapping and

coloring heuristics for distributed memory parallel processors. SlAM J. on Scientific

Computing, 13(1):194-226, January 1992.

[11] H. H. Reif, editor. Synthesis of Parallel Algorithms. M. Kaufmann, San Matro, CA,

1993.

[12] M. Saxena and R. Perucchio. Parallel fem algorithms based on recursive spatial

decompositions - I. automatic mesh generation. Computers and Structures, 45:817-

831, 1992.

[13] W. J. Schroeder. Geometric Triangulations: with Application to Fully Automatic

3D Mesh Generation. PhD thesis, Rensselaer Polytechnic Institute, Scientific

Computation Research Center, RPI, Troy, NY 12180-3590, May 1991.

[14] W. J. Schroeder and M. S. Shephard. An O(N) algorithm to automatically generate

geometric triangulations satisfying the Delaunay circumsphere criteria. Engng. with

Computers, 5(3/4): 177-194, 1989.

[15] W. J. Schroeder and M. S. Shephard. A combined octree/Delaunay method for fully

automatic 3-D mesh generation. Int. J. Numer. Meth. Engng., 29:37-55, 1990.

[16] W. J. Schroeder and M. S. Shephard. On rigorous conditions for automatically

generated finite element meshes. In J. Turner, J. Pegna, and M. Wozny, editors,

Product Modeling for Computer-Aided Design and Manufacturing, pages 267-281.

North Holland, 1991.

[17] M. S. Shephard and M. K. Georges. Automatic three-dimensional mesh generation

by the Finite Octree technique. Int. J. Numer. Meth. Engng., 32(4):709-749, 1991.

14

